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Abstract—In this paper, analysis of a buck converter operated
applying a peak limiting current mode control is performed,
focusing regions where the limit cycle is unstable. Normalized
discrete time converter model is derived. Chart of operating
modes is presented, and it is shown that the converter exhibits
an infinite number of discontinuous conduction modes in an
area where the continuous conduction mode would be expected
assuming stable limit cycle. The converter is analyzed applying
numerical techniques to determine period number of different
discontinuous conduction modes and dependence of the output
current on the output voltage and the limiting current. The
numerical results agree with the analytical results in areas where
the limit cycle is stable, and differ in regions where the limit
cycle is unstable. Two different notions of stability, the limit cycle
stability and the converter open loop stability, are clarified.

Index Terms—Buck Converter, Current Mode Control, Dis-
continuous Conduction Mode.

I. INTRODUCTION

Buck converter, shown in Fig. 1, operated applying the peak
limiting current mode control is analyzed in this paper, aiming
proper understanding and modeling of regions characterized by
unstable limit cycle. Analytical models of buck converters are
presented in [1], where both the continuous and the discontinu-
ous conduction mode are analyzed, as well as instability of the
limit cycle in the continuous conduction mode for the output
voltage greater than one half of the input voltage. The results
presented there indicate open loop instability of the converter
in the discontinuous conduction mode for the output voltage
greater than one half of the input voltage, although the limit
cycle is stable in this case. Comprehensive presentation of [1]
aggregates results of many previous publications. Although the
topic is more than 30 years old [2], it occasionally attracted
attention over decades [3-7]. Detailed analysis is presented in
[6], where fairly general case is analyzed, resulting in equa-
tions that are sometimes hard to follow. Discrete time model of
the converter and bifurcations are analyzed in [7]. In [8], open
loop instability of the converter operated in the discontinuous
conduction mode for the output voltage greater than one half
of the input voltage is analyzed, and as an auxiliary result
multiple period discontinuous conduction modes are noticed.
Besides, such waveforms have been occasionally observed in
practice, but remained without a deeper analysis. This paper is
a continuation of [8], focusing regions of unstable limit cycle
operation.

Purpose of this paper is to clarify operation of the peak lim-
iting current mode controlled buck converter in regions where
the limit cycle is unstable in an easy-to-follow manner. To
achieve this goal, both analytical and numerical techniques are
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Fig. 1. Buck converter.

applied. Analysis of the buck converter is reduced to analysis
of a switching cell. The circuit voltages, currents, and time
are normalized to generalize the results. A program to analyze
the switching cell operation is given, and the results obtained
using the program are presented, analyzed and discussed. It
is shown that the converter exhibits an infinite number of
period-n discontinuous conduction modes, and boundaries of
the region where such modes exist are analytically derived.
Regions where period-n discontinuous conduction modes oc-
cur are determined numerically and presented for n ≤ 10.
Dependence of the converter output current on the output
voltage and the limiting current is computed numerically, and
the results are equal to theoretical predictions in regions where
period-1 operation occurs, while different elsewhere. Open
loop stability of the converter, being a concept different than
the limit cycle stability, is analyzed numerically, and unstable
regions are identified.

II. REDUCTION TO A SWITCHING CELL MODEL

A. Approximation

To simplify the analysis and to focus attention to a part of
the circuit that causes the complex behavior, let us assume
that the converter output voltage is constant. This assumption
at least has to hold over one switching period, to justify linear
ripple approximation. The assumption results in a simplified
equivalent circuit of the buck converter, shown in Fig. 2,
frequently named as a “switching cell”.

B. Circuit Equations

After the converter is reduced to the switching cell intro-
ducing the approximation that the output voltage is constant,
solving the circuit reduces to determination of the inductor cur-
rent waveform. Governing equation to determine the inductor
current waveform is

L
d iL
dt

= vL (1)
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Fig. 2. Switching cell.
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Fig. 3. Aimed waveform of iL in the DCM.

which is a differential equation that requires an initial condi-
tion to provide a unique solution.

Voltage across the inductor depends on the states of the
switching elements. For all three (out of four theoretically
possible) combinations of states of switching elements that
occur during the converter operation, voltages across the
inductor are

vL =

 VIN − VOUT , S− on, D− off
−VOUT , S− off, D− on
0, S− off, D− off

(2)

which results in the waveform of the inductor current in the
discontinuous conduction mode as depicted in Fig. 3. In the
case of the discontinuous conduction mode, later to be labeled
as period-1 discontinuous conduction mode, initial value of
the inductor current at the beginning of the switching period
is zero. The waveform consists of linear segments, since all of
the voltages that might appear across the inductor are assumed
as constant in time.

C. Normalization

The approach to analyze the switching cell in this paper is
primarily based on numerical simulations. To generalize the re-
sults, normalization is performed. Choice of the normalization
variables is typical, such that all of the voltages are normalized
taking the input voltage as the base quantity,

m ,
v

VIN
(3)

which results in MIN = 1. Chosen notation is such that
indexes of the voltages remain in general, while the quantity
is labeled as m instead of v. The only exception from this rule
is the output voltage, labeled just as M , according to

M ,
VOUT

VIN
. (4)

Currents are normalized using VIN/ (fSL) as the base
quantity

j ,
fSL

VIN
i (5)

while the time intervals are normalized taking the switching
period as the base quantity

τ ,
t

TS
. (6)

After the normalizations are performed, the differential
equation that governs the inductor current reduces to

d jL
dτ

= mL (7)

and the set of possible voltages across the inductor is

mL =

 1−M, S− on, D− off
−M, S− off, D− on
0, S− off, D− off

. (8)

III. DISCRETE TIME MODEL OF THE SWITCHING CELL

Discrete time model of the switching cell is aimed towards
obtaining the average the output current of the switching cell
during one switching period (jOUT ), as well as the final value
of the inductor current at the end of the switching period,
jL(1), which is the initial value for the next switching period.
Both of the variables are dependent on the initial value of the
inductor current, jL(0), specified maximum of the inductor
current when the switch turns off, Jm, and the output voltage,
M . To perform the analysis, it is assumed that the output
voltage of the switching cell, M , is constant during a switching
period.

Operation of the switching cell during a switching period
is analyzed following state changes of the switching elements
in time, and thus related changes in the inductor voltage.

Each switching period begins with turning the switch on,
and the switching cell enters the state when the switch is
on, while the diode is off. Assuming this state throughout the
switching period, the final value of the inductor current would
be

jX = jL(0) + (1−M) . (9)

In the case jX ≤ Jm, this completes the switching cycle, and

jL(1) = jX (10)

while contribution of the switching period to the output charge,
i.e. the average of the output current is

jOUT =
jL(0) + jX

2
. (11)

This situation is depicted in Fig. 4(a). In the case jX > Jm,
at

τ1 =
Jm − jL(0)

1−M (12)

the inductor current reaches Jm, and the switch is turned off.
The switching cell enters the state when the switch is off,
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Fig. 4. Switching patterns.

and the diode is on. Contribution of this interval to the output
charge is

q1 =
jL(0) + Jm

2
τ1. (13)

In the second interval, if entered, the inductor current is
determined by

jL(τ) = Jm −M (τ − τ1) . (14)

Assuming the switching cell remains in this state till the end
of the switching period, the final value of the inductor current
would be

jY = Jm −M (1− τ1) . (15)

In the case jY ≥ 0, obtained value really is the final value

jL(1) = jY (16)

and contribution of this interval to the output charge is

q2 =
Jm + jY

2
(1− τ1) (17)

resulting in the output current

jOUT = q1 + q2. (18)

This situation is depicted in Fig. 4(b). In the opposite case,
when jY < 0, at

τ2 = τ1 +
Jm
M

(19)

the diode turns off. Contribution of the time interval when the
diode was on to the output charge is

q3 =
Jm
2

(τ2 − τ1) . (20)

The third interval, if entered, is characterized by jL = 0,
since both the switch and the diode are open. This results in
the final value of the inductor current

jL(1) = 0 (21)

and the output current

jOUT = q1 + q3. (22)

This concludes the switching cell discrete time model. The
model should be considered as a mapping of jL(0), M , and
Jm to jL(1) and jOUT . Although it is possible to provide
these two expressions in a closed form, it is avoided here,
since the approach that involves auxiliary variables is more
convenient to be programmed, and the aim of this paper is
semi numerical analysis of the converter, being performed
by a computer program. The program used to analyze the
buck converter switching cell operated by peak limiting current
mode control is given in the Appendix.

IV. CONDUCTION MODES

Under the term “discontinuous conduction mode”, period-1
discontinuous conduction mode is frequently assumed [1].
This mode results in the inductor current waveform as shown
in Fig. 3, and in the (M, Jm) plane occurs for

Jm < M (1−M) (23)

as detailed in [8] using the same notation as in this paper.
Besides, the open loop averaged model is unstable for M >
1/2, but in the whole region the discontinuous conduction
mode is characterized by period-1 operation, with stable limit
cycle.

As an auxiliary result of [8], occurrence of multiple-period
discontinuous conduction modes is described. Such modes are
characterized by a waveform which repeats after an integer
number of switching periods, and ends with a switching period
of the type depicted in 4(c), ending by an interval in which
the inductor current is equal to zero. Actually, this interval
enforces periodical behavior, since the initial condition is exact
and fixed.

A question that naturally arises is an area in (M, Jm) plane
in which multiple period discontinuous conduction modes
occur. A boundary is determined with Jm value which is large
enough to guarantee that the inductor will not get discharged
over a switching period. Since the inductor is being discharged
with the slope −M , and the change in the inductor current is
−Jm over normalized time ∆τ = τS = 1, the upper boundary
is determined by Jm = M . To summarize, conditions for the
multiple period discontinuous conduction mode to occur are:

1) Jm > M (1−M), to exclude period-1 discontinuous
conduction mode;
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Fig. 5. Chart of the conduction modes.

2) M > 1
2 , to provide unstable limit cycle of period-1

continuous conduction mode, as discussed in [8];
3) Jm < M , to allow the inductor current to discharge.

Described region of operation is depicted in Fig. 5. Besides
the described multiple period discontinuous conduction mode,
common period-1 discontinuous conduction mode operating
region is presented, as well as the continuous conduction
modes:

1) period-1 continuous conduction mode, for Jm >
M (1−M) (to avoid the discontinuous conduction
mode), and M < 1

2 , to provide stable period-1 limit
cycle.

2) period-n continuous conduction mode, for Jm > M ,
and M > 1

2 , characterized by an unstable limit cycle;
it should be noticed that n in “period-n” might go
to infinity (n → ∞), which corresponds to chaotic
operation.

V. OUTPUT CURRENT AND STABILITY

Essential function to be modeled is the dependence of the
switching cell output current, which is the average of the
inductor current, jOUT = jL, on the output voltage M and
the control parameter Jm. Under the assumption that the limit
cycle is always period-1 and stable, there are two results,
depending on the conduction mode:

1) in the discontinuous conduction mode, the output current
is given by

jOUT =
J2
m

2M (1−M)
(24)

2) in the continuous conduction mode, the output current
is given by

jOUT = Jm −
1

2
M (1−M) . (25)

Fig. 6. Dependence of the period number on M and Jm.

both of the equations reduce to jOUT = 1
2 Jm at the boundary

between the modes. It should be underlined here that in both of
the assumed modes the equations are symmetric over M = 1

2
line, since the same output current is obtained for Mx and
1−Mx, assuming the same value of Jm. This result is revisited
in this paper and it is shown that it is wrong, due to the limit
cycle instability for M > 1

2 .
For M > 1

2 , the result for the output current for M > 1
2

and Jm > M (1−M), is different than given by (25), since
the expected inductor current waveforms do not correspond to
a stable limit cycle and do not appear in practice. Due to the
unstable limit cycle in the continuous conduction mode, the
switching cell might operate either in theoretically unlimited
number of different period-n discontinuous conduction modes,
or in period-n continuous conduction modes and chaotic,
i.e. aperiodic, continuous conduction modes, in appropriate
regions specified by Fig. 5. Dependence of jOUT on M and
Jm in such cases is convenient to be analyzed numerically,
applying a program given in the Appendix.

The program to analyze the switching cell normalized model
numerically, given in the Appendix, iterates the discrete time
model of the switching cell for a given set of M and Jm
values, starting from the initial value of the inductor current
equal to zero. The number of iterations is limited to 500
in the given example, but any larger number would provide
even more accurate results. The output current is computed
during the simulation, and the output charge accumulated. If
at a switching period the converter enters an interval when
both the switch and the diode are off, as depicted in Fig.
4(c), the simulation stops, records the period number, and
computes the output current according to the charge passed



Fig. 7. Dependence of jOUT on M and Jm.

to the output and the number of periods. In the case converter
operates in the continuous conduction mode, the simulation
stops after the maximal number of periods elapsed, and the
output current is determined as the charge supplied to the
output over the interval of time determined by the maximal
number of periods. In the continuous conduction modes, the
larger the maximal number of periods is, the more accurate
value for the output current is obtained, since the startup
transient is included in the simulation, not just the steady
state operation. Program given in the Appendix is written in
Python programming language, using PyLab environment, and
presents a core part of the package used to generate results
for this paper: it computes and stores the period number and
average of the output current. The results are presented in Fig.
6 for the period number and in Fig. 7 for the output current.
The diagram of the period number indicates boundary of the
continuous conduction mode as predicted in Fig. 5 and by
the analysis behind it. The dependence of jOUT on M and
Jm does not follow the symmetry predicted by (25) and (24),
since instability of assumed fixed points, taken into account,
affects the result.

In [8], focus of the analysis was in period-1 discontinuous
conduction mode, where the limit cycle is stable, but the
converter is open loop unstable. Term “open loop” assumes
constant Jm, not dependent on M . Open loop instability
occurs when

d jOUT

dM
> 0 (26)

as detailed in [8]. It is a phenomenon different than the
limit cycle instability. For example, for M > 1

2 and Jm <
M (1−M), the limit cycle is stable, in period-1 discontinuous

Fig. 8. Dependence of the switching cell open loop stability on M and Jm:
white—stable; black—unstable.

conduction mode, while the converter is open loop unstable. To
analyze stability for M > 1

2 and Jm > M (1−M), numerical
results provided by the program given in the Appendix are
analyzed to determine open loop stability of the converter.
Such analysis requires derivative of jOUT over M assuming
Jm constant. The analysis is performed over the entire set of
simulation results applying finite differences to estimate the
derivative numerically. The result is presented in Fig. 8, where
open loop stable regions are shown in white, while unstable
regions are in black. The results match the theoretical predic-
tions for regions where period-1 operation occurs, both for the
continuous and for the discontinuous conduction mode, and
provide new insight for limit-cycle unstable regions. Frequent
changes from stable to unstable operation indicate that small-
signal parameters, commonly used in regulator design, are of
limited value in the limit cycle unstable regions, due to the
sensitivity on parameter variations.

VI. CONCLUSIONS

In this paper, operation of peak limiting current mode
controlled buck converter is analyzed, aiming understanding
of its operation in unstable limit cycle regions. The converter
is analyzed assuming constant output voltage, effectively re-
ducing the converter to a switching cell. Equations of the
switching cell are normalized, to generalize the numerical
results. A discrete time model of the switching cell is obtained
in the form of two functions that map the initial value of
the inductor current at the beginning of the switching cycle
(jL(0)), the output voltage (M ), and the limiting current (Jm)
to the final value of the inductor current at the end of the



switching cycle (jL(1)) and the average of the inductor current
during the switching cycle (jOUT ).

After the normalized model of the switching cell is obtained,
it is analyzed assuming period-1 stable limit cycle operation,
and boundary between the continuous and the discontinuous
conduction mode is derived, as well as the output current in
both of the modes. The result indicates that the dependence
of the output current is symmetric over the line determined
by the output voltage equal to one half of the input voltage.
Knowing that the limit cycle is unstable for the output voltage
greater than one half of the input voltage, boundary of the
region where period-n discontinuous conduction modes might
occur is determined analytically. Chart of modes is presented
in the limiting current versus output voltage plane.

After the analytical approach, numerical methods are ap-
plied to analyze the converter. Obtained normalized model
of the switching cell is simulated using the program given
in the Appendix, and dependence of the output current and
the period number on specified values of the output voltage
and the limiting current are obtained. Open loop stability of
the converter is analyzed, and complex behavior in regions
characterized by unstable limit cycle is observed. In regions
characterized by stable limit cycle, numerical and analytical
results match perfectly. Expected symmetry of the output
current assuming stable limit cycle is shown not to occur, and
the output current obtained in regions where period-1 limit
cycle is unstable is different from the value obtained assuming
stability.

Two notions of stability, the limit cycle stability and the
open loop stability, are clarified to be different. Open loop
stability chart of the converter is presented, showing that all
four combinations of the open loop and the limit cycle stability
actually occur in the analyzed converter. In regions where
the limit cycle is unstable, the converter exposes complex
behavior, and small signal analysis is of small practical value
due to the sensitivity of parameter variations.
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[8] M. Glišić, P. Pejović, “Stability Issues in Peak Limiting Current Mode
Controlled Buck Converter,” 17th International Symposium on Power
Electronics Ee 2013, Novi Sad, October-November 2013

VII. APPENDIX
from pylab import *

nitmax = 500
scale = 1000

nm = 1 * scale
deltam = 0.5 / nm
nj = 3 * scale / 2
deltaj = 1.5 / nj

M = linspace(deltam, 1 - deltam, nm)
Jm = linspace(deltaj, 1.5, nj)

Jout = empty((nm, nj))
Pern = empty((nm, nj))

mout = []
jout = []
pern = []

ijm = - 1
for jm in Jm:

ijm += 1

im = - 1
for m in M:

im += 1

print jm, m

# initialization
tau = [0]
jln = [0]
dcmflag = 0
jl0 = 0
q = 0
nper = 0

count = 0
while (dcmflag == 0 and count < nitmax):

count += 1
nper += 1
tau1 = (jm - jl0) / (1 - m)
if tau1 > 1:

jl1 = jl0 + 1 - m
tau.append(tau[-1] + 1)
jln.append(jl1)
q += (jl0 + jl1) / 2.0
jl0 = jl1

else:
tau.append(tau[-1] + tau1)
jln.append(jm)
q += (jl0 + jm) / 2.0 * tau1
tau2 = jm / m
if tau1 + tau2 > 1:

tau3 = 1 - tau1
jl1 = jm - m * tau3
tau.append(tau[-1] + tau3)
jln.append(jl1)
q += (jm + jl1) / 2.0 * tau3
jl0 = jl1

else:
tau.append(tau[-1] + tau2)
jln.append(0)
q += jm / 2.0 * tau2
dcmflag = 1
tau4 = 1 - tau1 - tau2
tau.append(tau[-1] + tau4)
jln.append(0)
jl0 = 0

jout = q / nper

Jout[im, ijm] = jout
Pern[im, ijm] = nper

np.save(’M.npy’, M)
np.save(’Jm.npy’, Jm)
np.save(’Jout.npy’, Jout)
np.save(’Pern.npy’, Pern)


