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Abstract:  Peak limitting current mode control of a buck 
converter is reexemined in this paper. It is shown that in 
the discontinuous conduction mode the conversion ratio 
determines the converter open loop stabilitity. 
Furthermore, it is shown that the converter might exhibit 
limit cycle instability and period multiplication which 
results in complex behavior and sensitive small signal 
parameters. 
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1. INTRODUCTION 

Buck converter loaded by a constant current load, 
shown in Fig. 1, might expose instability when operated 
in the discontinuous conduction mode (DCM) applying 
peak limiting current mode control. The phenomenon 
occurs in cases when the converter output voltage is 

2INOUT vv > , which corresponds to an unstable fixed 

point. This behavior could be analytically predicted 
analyzing equations of [1], but practicing engineers are 
sometimes not familiar with this modeling result. 
Although the topic is more than 30 years old [2], it 
attracted attention over decases [3–7]. Detailed analysis 
is presented in [6], where fairly general case is analyzed, 
resulting in equations that are sometimes hard to follow. 
Discrete time model of the converter and bifurcations are 
analyzed in [7]. 

Purpose of this paper is to clarify the instability in an 
easy-to-follow manner, to provide proper models and 
physical insight in the phenomena, and to identify 
regions that guarantee period-1 limit cycle operation, 
regardless the open loop stability. 

2. AVERAGING 

In the case the buck converter of Fig. 1 is operated 
applying peak limiting current mode control, waveform 
of the inductor current in the discontinuous conduction 
mode is as depicted in Fig. 2. The waveform is obtained 
assuming that the input voltage and the output voltage 
are constant over a switching period, and this assumption 
will hold during the entire analysis presented in this 
paper. In this manner, the converter is effectively 
simplified to a switching cell, depicted in Fig. 3, to 

compute an average of the inductor current, required to 
derive dynamic model of the converter. Control variable 
is maximum of the inductor (i.e., the switch) current mI , 

and the average of the inductor current over a switching 
cycle is related to the converter parameters as 
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The average value of the inductor current results in a 
differential equation that governs the output voltage 
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Setting 
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provides fixed points of the output voltage, and they are 
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Both of the fixed points are within limits 
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Fig. 1. Buck converter with a constant current load. 

  
Fig. 2. Inductor current in the DCM. 

 
Fig. 3. Buck converter reduced to a switching cell. 



INOUT vv << 2,10 . One of these fixed points is stable, 

while the other one is unstable. To gain understanding, 
let us consider an example of a converter with 

V12=INv , µH36=L , kHz100=Sf , A5.0=mI , 

A2.0=OUTi , µF200=C . In that case, dependence of 

Li  on OUTv  is 
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which for A2.0== LOUT ii  provides fixed points of 

V31, =OUTv  and V92, =OUTv . This example is depicted 

in Fig. 4, where crossings of ( )OUTL vi  and OUTi  indicate 

fixed points. In the diagram of Fig. 4, the solid blue line 
corresponds to the converter operating in the 
discontinuous conduction mode, for << OUTvV2053.2  

V7947.9 , while the dashed green line corresponds to the 

continuous conduction mode. In the discontinuous 

conduction mode, 2mL Ii < , which corresponds to the 

data of Fig. 4. Hidden assumption in the analysis was 
that the converter operates in a stable period-1 mode, and 

Li  is computed to correspond to that case. However, this 

assumption will not be satisfied for the entire operating 
region INOUT vv <<0 . 

3. LINEARIZATION 

To analyze stability of the fixed points, linearization 
[1] of (2) is performed, and after transforming the 
equation over perturbations in complex domain, it takes 
form 

 OUTmmOUTOUTININOUT iIvgvgvCs ˆˆˆˆˆ −++= α  (6) 

where 
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and 

 ( ) OUTOUTIN

INMS
m VVV

VILf

−
=α  (9) 

where INV , OUTV , and MI  correspond to the values of 

INv , OUTv , and mI  at the considered operating point, and 

INv̂ , OUTv̂ , mÎ , and OUTî  represent variations of the 

corresponding quantities in reference to their value at the 
operating point. 

Rearranging (6), transfer functions of the system 

 OUTOUTmmININOUT iHIHvHv ˆˆˆˆ −+=  (10) 

are obtained as 
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To provide stability of the transfer functions, it is 
necessary that 0<OUTg , i.e. 

 0<
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L
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which corresponds to downward crossings of ( )OUTL vi  

over the load line OUTi . According to (8), this is achieved 

for 

 INOUT VV
2

1<  (15) 

where ( )OUTL vi  decreases monotonically. 

4. DISCRETE TIME MODEL 

To analyze the behavior, normalization is applied, 
such that voltages are normalized to the input voltage as 
a base quantity, 
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while currents are normalized to 
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Time variable is normalized to the switching period, 
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In this manner, the inductor equation is from 
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normalized to 
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Value of Lm  is M−1  when the switch is on, M−  when 

the switch is off, and zero when neither the switch nor 
the diode are on, while INOUT vvM =  is normalized 

value of the output voltage. We will also assume that mI  

is normalized to mJ , and so forth. 

To model the switching cell, let us assume that initial 
value of the inductor current is ( )00 Ljj = . Our goal is to 

determine ( )11 Ljj = , assuming that mJ  and M  are 

known. To achieve this goal, three cases should be 
considered. 

 
Fig. 4. Dependence ( )OUTL vi  and the fixed points. 



The first case corresponds to the situation when the 
switch is on during the whole switching period. Let us 
compute the time required to get from 0j  to mJ , 1τ , 
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In the case 
 11 ≥τ  (22) 

the switch does not get turned off during the switching 
period, and corresponding value of 1j  is 

 Mjj −+= 101 . (23) 

Average value of the inductor current during this 
switching period is  
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In the case 11 <τ , the switch turns off at 1τ , and the 

next relevant time is the time when the inductor current 
would reach zero. Let us name the time interval Lj  

requires to get from mJ  to 0  as 2τ ,  

 
M
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In the case 
 121 ≥+ττ  (26) 

the diode does not turn off till the end of the switching 
period, and the final value of the inductor current is 
 ( )11 1 τ−−= MJj m  (27) 

Average value of the inductor current during this 
switching period is 

 ( ) ( )( )( )1110 1
2

1 ττ −+++= jJJjj mmL . (28) 

This is the second of the considered cases. Together with 
the first case, it consists a group of continuous 
conduction cases, where 0>Li  during the whole 

switching period. 
On the other hand, if 121 <+ττ , the case is a 

discontinuous conduction one, characterized by existence 
of a time interval where 0=Li . In that case 

 01 =j  (29) 

and the average of the inductor current during the 
switching period is 

 ( )212

1 ττ += mL Jj . (30) 

This concludes analysis of possible cases, where 
implicit assumption was that 10 << M . The model 
consists of the mappings ( )MJjj m,,01  and 

( )MJjj mL ,,0 . 

All of subsequent numerical results will be obtained 
using this model, and denormalized to provide diagrams 
that correspond to the considered converter example. 

5. BASINS OF ATTRACTION 

To illustrate stability of fixed points, let us follow the 
introduced example. Depending on the initial condition 
for the capacitor (i.e., output) voltage, there are two 
basins of attraction separated by the repelling unstable 
fixed point. The first basin of attraction applies for the 
initial conditions ( ) V90 <OUTv , converging towards the 

stable fixed point of V3=OUTv . The second basin of 

attraction applies for ( ) V90 >OUTv , where the output 

voltage increases, ending up in a period-2 limit cycle for 
the considered example. To illustrate these effects, 
simulation of the converter discrete time model is 
performed for initial values of the output voltage of 

( ) V9.80 =OUTv , which corresponds to red curves (dots) 

in Fig. 5, and ( ) V1.90 =OUTv , which corresponds to blue 

curves (dots) in Fig. 5. 
In Fig. 5, waveform of the output voltage and average 

of the inductor current over a switching cycle are 
presented, as a result of a discrete time simulation 
applying forward Euler integration method with a time 
step equal to the switching period. It should be 
underlined here that the average of the inductor current is 
not a continuous time running average, but discrete time 
average over a well defined switching period, which 
starts when the switch is turned on and ends at the 
subsequent turn on signal for the switch. The transient 
that corresponds to ( ) V9.80 =OUTv , red line, completes 

 

 
Fig. 5. Waveforms of the output voltage and per-cycle 
average of the inductor current obtained applying the 

discrete time converter model. 

 
Fig. 6. Steady state waveform of Li  for ( ) V1.90 =OUTv , 

period doubling. 



while the converter operates in the discontinuous 
conduction mode, in period-1 operation, while in the 
second transient the converter operation at one point 
exhibits period-2 bifurcation, resulting in one cycle with 

one value of Li , followed by a cycle with a different 

value of Li , while the average of these values in steady 

state corresponds to the output current. In the second 
case, for ( ) V1.90 =OUTv , the output voltage would 

converge to an analytically obtained limit of 
V1232.10≈OUTv  (to be discussed in further text), while 

the numerical simulation obtained applying the discrete 
time model provides V09.10≈OUTv , which is a good 

agreement regarding the simple numerical integration 
method used. Waveform of Li  over its period of ST2  

(period doubling) is shown in Fig. 6, exposing typical 
“twin peaks” waveform. 

6. LIMIT CYCLES 

Previous example illustrates that the assumption of 
period-1 operation introduced to obtain the diagram of 
Fig. 4 does not hold. Some of the period-1 limit cycles 
are unstable, and the converter tends to repel them in 
favor of a stable limit cycle. In the case 20 mOUT Ii << , 

which corresponds to the analyzed example, the 
converter in steady state operates in some sort of 
discontinuous conduction mode, having an interval of 
time with the inductor current equal to zero. This allows 
us to start simulation with the initial condition of the 
inductor current equal to zero, and to perform simulation 
until the next zero-current interval is reached. This 

approach results in the ( )OUTL vi  diagram shown in 

Fig. 7, which is quite different from the diagram of Fig. 4 
in the region that would correspond to the continuous 
conduction operation for 2INOUT vv > , and exhibits 

complex behavior. In the diagram of Fig. 7, downward 

crossing of ( )OUTL vi  line (blue) with the load line (red) 

at V1232.10≈OUTv  corresponds to the stable limit cycle 

observed in Fig. 5, with Li  shown in Fig. 6. 

Analyzing the diagram of Fig. 7, for 41<mJ  

(condition for the DCM to exist) several regions could be 
identified, as follows: 

1. Continuous conduction mode, for 
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4

1
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1
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The limit cycle is period-1 and stable, and 

( )OUTL vi  is the same as in Fig. 4. The system in 

open-loop is at the boundary of the stability 
region (not derived here, [1]). 

2. Discontinuous conduction mode, for 
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The limit cycle is period–1 and stable, and 

( )OUTL vi  is the same as in Fig. 4. The system in 

open-loop is stable. 
3. Discontinuous conduction mode, for 
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The limit cycle is period–1 and stable, and 

( )OUTL vi  is the same as in Fig. 4. The system in 

open-loop is unstable, and compensator should be 
designed to stabilize the system, [8]. 

4. Discontinuous conduction mode, for 
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This operation region would correspond to the 
continuous conduction mode, if the limit cycle 
had been stable. The limit cycle is period-n, 

1>n . Dependence ( )OUTL vi  is quite different 

than shown in Fig. 4. 
Although the diagram of Fig. 7 for (34) seems to be 

fairly complex, significant parts of the curve might be 
analytically explained in close form. The first case to be 
analyzed is a family of period-n limit cycles in which the 
inductor current has triangular waveform. To analyze 
such cases, let us redefine 1τ  as the time required to 

reach mJ  starting from zero, 
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and keep the definition of 2τ  as given by (25). Our goal 

at this point is to determine regions over M  in which the 
operating mode is discontinuous, and the waveform of Li  

is triangular. 
The period-n triangular waveform DCM starts at the 

value of M where 11 −= nτ , taking 1−n  switching 

periods to charge the inductor, which discharges during 
the n-th switching period, 12 <τ . This type of response 

ends when n=+ 21 ττ . These two conditions restrict the 

range of M where period–n triangular waveform of the 
inductor current is achieved to 
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resulting in the inductor current average 
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In Fig. 8, numerically obtained result is plotted in blue 
dots, while the analytically obtained results are shown in 
thin line. Dependence (37) is plotted for n up to 10 in 

 
Fig. 7. Dependence ( )OUTL vi  with zero initial conditions.



thin red line, and perfectly fits the numerically obtained 
data where applicable. 

In the same manner, the “twin peaks” waveform, 
shown in Fig. 6, which characterizes period-2 operation 
that occurs between the period-1 triangular and period-2 
triangular waveforms, for 

 mm JMJ −<<−+ 1
4

1

2

1
 (38) 

could be analyzed. In that case, 
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and 
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Average value of the inductor current is 

 ( ) ( )( )4312112

1 ττττ mmmmL JJjjJJj +++++= . 

  (44) 
Expressing 1j , 1τ , 2τ , 3τ , and 4τ  in terms of mJ  and 

M , dependence of Lj  on M  is obtained as 
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which is plotted in Fig. 8 in thin yellow line, and 
perfectly fits the numerically obtained curve. 

To verify the analytical results, an experimental setup 
is built, and several conclusions are tested, including the 
period doubling, as shown in Fig. 9. 

7. CONCLUSIONS 

In this paper, peak limiting current mode control 
implemented in a buck converter is analyzed, focusing 
the discontinuous conduction mode. Averaged and 
linearized averaged converter model are derived 
assuming constant current load, and it is shown that to 

provide stable open loop behavior curve ( )OUTL vi  should 

cross the load line in a downward fashion. It is shown 
that the open loop transfer functions are stable for 

21<INOUT vv , and that the response is unstable with 

period-1 limit cycle for +<< 2121 INOUT vv  

INmS vILf−41 . Further increases in the output 

voltage result in complex behavior, with period 

multiplication and oscillatory dependence of ( )OUTL vi , 

thus with hard to predict open loop stability and low 
robustness of the linearized model. Thus, this operating 
mode should be avoided in practice, in order to keep the 
switching frequency and the output voltage ripple under 
control. 
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Fig. 8. ( )OUTL vi  comparison of the numerical and the 

analytical solution. 

 
Fig. 9. Waveform of Li , experimental result, period 

doubling. 


